Alternative approaches to functional and phenotypic assays using multi-parameter flow cytometry
David Mohab
Can you provide an overview of Synexa and the services the company offers?
Synexa Life Sciences is a global specialist provider of biomarker and bioanalytical services for the pharma and biotech industry. We work on studies that span the drug development process, through a network of laboratory sites that are located in London, Berlin, Turku in Finland, Cape Town, and Rockville in the US.
Our mandate is to provide an integrated science-driven, peer-to-peer service to biotech and pharma companies that span both the preclinical and clinical phases of drug development. Our core expertise is in understanding immune system-mediated diseases and therapeutic modulation of the immune system.
Services include genetic, molecular, protein, cell and tissue analysis, cell and gene therapy bioanalytics, biomarker discovery, PK/PD, de novo assay method development, and validation. Our proprietary human in vivo translational research platform, ProtoTrials®, focuses on providing valuable early clinical insights and bridging the gap between preclinical and clinical phases.
What types of alternative multi-parameter flow cytometry approaches has Synexa developed?
Flow cytometry has long been used for routine assays, such as immunophenotyping, receptor occupancy, and to assess intracellular cytokine production. This is partly due to its versatility and the depth and volume of data that a single assay can produce.
However, as the technology and our understanding of the immune system have improved, the routine use of flow cytometry has expanded beyond these traditional uses. These include the analysis of antibody-dependent cellular cytotoxicity (ADCC), polyamine transport, anti-drug antibody (ADA) testing, cell-based PK assessment and phenotyping of extracellular vesicles. Immunomodulation has become an important therapeutic area for the treatment of a variety of diseases. This involves employing therapeutic monoclonal antibodies to treat diseases by activating immune-mediated responses.