Coral
Scientific Name(s): Phylum coelenterata
Common Name(s): Coral
Medically reviewed by Drugs.com. Last updated on Feb 3, 2022.
Clinical Overview
Use
Coral is used in cosmetic and reconstructive surgery and as a substrate for new bone growth.
Dosing
Coral is implanted, not administered as a drug.
Contraindications
Contraindications have not yet been identified.
Pregnancy/Lactation
There is no information related to safety in pregnancy and lactation.
Interactions
None well documented.
Adverse Reactions
Coral does not appear to be rejected or to produce adverse effects.
Toxicology
There have been no deleterious reports on the use of coral.
Source
Corals are a broad group of marine invertebrate animals (phylum Coelenterata) that deposit a mineral skeleton as they grow, eventually producing coral reefs. Corals used for medical application are limited to a select number of genera. Goniopora and Porites appear to be the most commonly utilized. Others include Acropora, Lobophyllia, Polyphyllia, Pocillopora and Foraminifera. Areas of harvest include the Caribbean Sea, the New Calendonia island area of the Pacific Ocean, the Red Sea, the east coast of Africa, the Gulf of Thailand, the coast of Hainan Island, and the coastline of Australia.Chou 2013, Demers 2002
History
While coral has been used by the inhabitants of Pacific regions as cutting tools and as the basis of jewelry and amulets, it was not until the mid-1980s that its value in surgery was fully recognized. The natural material derived from the matrix of sea coral serves as an effective substrate for the growth of new bone in areas damaged by trauma or requiring reconstruction. Coral may be more durable than bone and appears to eliminate some of the complications inherent in traditional bone graft surgery.Smith 1989
Chemistry
Coral polyps absorb calcium ions and carbonic acid present in seawater to produce aragonite crystals of calcium carbonate, representing 97% to 99% of the coral exoskeleton. The remainder is made up from various elements, including magnesium (0.05% to 0.2%), sodium (0.4% to 0.5%), and traces of potassium (0.02% to 0.03%), strontium, fluorine, and phosphorus in the phosphate form. The 3 elements in coral are known to play a critical role in the bone mineralization process and in the activation of enzymatic reactions with osteoid cells. Strontium contributes to the mineralization process and protects calcification. Fluorine, present 1.25 to 2.5 times more in coral than bone, is thought to help bone formation through its effect on osteoblast proliferation.Demers 2002
The main differences between natural coral and bone are the organic content and mineral composition. One third of bone is made up of organic components, compared with 1% to 1.5% of coral. The mineral content of bone is mainly hydroxyapatite and amorphous calcium phosphate associated with calcium carbonate, while coral is essentially calcium carbonate. Most of the elements found in bone can be found in coral but in a different distribution.Demers 2002
Although the structural and mineral composition of coral is very similar to that of bone, coral is not implanted in its natural state. Following its harvest, coral is treated chemically together with heat and high pressure to convert the calcium carbonate matrix to hydroxyapatite (calcium phosphate hydroxide). Hydroxyapatite is the normal mineral portion of bone.
Natural coral has a porous structure that offers a substantial surface exchange area. The size and interconnectivity of the coral ...